

DOE Annual HEP Program Review

Physics Department Overview

Sam Aronson Physics Dept. 2003 Chair, April 22,

Outline of this talk

- Structure and mission of the Physics Department
- Brief description of selected Physics Department Activities
 - Theory
 - D-Zero
 - RSVP (KOPIO, MECO)
 - $(g-2)_{\mu}$, E949
 - MINOS
 - Advanced Accelerator development
 - Accelerator Test Facility
 - Astrophysics initiative
- Budgets and Manpower
- Summary and Conclusions

Summary

- The Physics Department has a strong program of forefront activities that is responsive to DOE research priorities in experimental and theoretical particle physics
- Physics Dept. has world-class efforts in accelerator and detector R&D deployed in support of ambitious new initiatives in HEP
- At present, HEP is in serious funding trouble in the Physics Dept. The base program and HEP Theory are losing staff and will continue to do so.
- BNL is committed to crafting a sustainable, prioritized HEP program that provides breadth and and is responsive to national and international priorities
- In the face of continuing budget cuts in the base program, this will become impossible to accomplish. Critical skills, recruiting opportunities and physics advances are being lost

BNL Physics Department

HEP Mission of the BNL Physics Department

- Take leading roles in high energy experimental and theoretical research with major discovery potential, both at BNL and other labs
- Take on tasks naturally suited to a national laboratory while closely collaborating with university groups
- Develop new HEP initiatives and capabilities through detector and accelerator R&D
- Maintain strong alignment with DOE HEP goals & priorities

BNL Theory Group

Supports the BNL experimental program

- ATLAS & D0 Collider Physics
 - Serious SUSY simulations (Paige)
 - Endpoints of lepton spectrum determine SUSY masses
 - NEW: Full GEANT simulation
 Full reconstruction
 - QCD and Higgs Physics (Dawson, Kulesza) [Talk by Kilgore]

- Rare Decays
 - New results on 2-loop electroweak contribution to (g-2)_μ including strong interaction corrections (Marciano)

$$a_{\mu}^{EW} = 154(1)(2) \times 10^{-11}$$

BNL Theory Group

- Theorists support the BNL experimental program
 - Spin physics at RHIC
 - How do we know what the polarization is? (Trueman)
 - High temperature QCD (Pisarski)
- BNL theorists advance long term US experimental program
 - Neutrino physics [Talk by Marciano]
 - Linear Collider Steering Committee (Dawson)
 - Lead LC Physics groups (Dawson, Marciano, Paige)
 - Underground Laboratory Steering Committee (Marciano)
 - B physics working group leader (Soni)
 - ATLAS SUSY working group leader (Paige)
- Lattice Gauge Theory naturally done at labs [Talks by Creutz & Soni]
 - RIKEN/BNL Collaboration (Berruto, Creutz, Soni)
 - New: Preliminary calculation of (g-2)_μ on lattice (Blum)
 - Weak Matrix elements on lattice:

$$a_{\mu}^{had}(lattice) = 460(78) \times 10^{-11}$$

BNL Theory Group

- Service to DOE:
 - P5, Facilities Committee (Marciano)
- Service to Community:
 - DPF chair (Dawson)
 - SciDAC EC (Creutz)
- Theory budget cuts a crisis:
 - Post-docs cut from 4 (FY02) to 3 (FY03) to 2 (FY04)
 - Summer Program cancelled (FY03)
 - Travel severely restricted stopped
 - Must reduce senior staff by 1 in FY03 and by another in FY04 to fit budget

Theory scientific staff:

Creutz

Dawson

Kilgore

Marciano

Paige

Pisarski

Soni

Trueman

Berruto

Chen

Kulesza

D0 experiment

Summary of Activities of the BNL group:

[talk by Jain]

- BNL group on D0 (5.4 FTEs):
 - V. Jain*
 - S. Kahn
 - J. Kotcher
 - A. Patwa*
 - S. Protopopescu*
 - S. Snyder*
 - A. Turcot*
 - K. Yip
- Leadership Roles:
 - Manager of Run IIb Project (Kotcher)
 - Leader of Data Tier group (Protopopescu)
 - Co leader of Calorimeter and Preshower software development (Turcot)
 - Co leader of B-physics analysis group (Jain)

D0

- Hardware and Software Contributions:
 - Commissioning FPS (Patwa)
 - Development of Online infrastructure software (Snyder)
 - Development of L1 Track Trigger Simulation software (Jain)
 - Software development for FPS (Patwa, Protopopescu, Turcot)
 - Development of Offline Calorimeter Software (Kahn, Turcot)
 - Development of Offline infrastructure and analysis software (Jain, Protopopescu, Snyder)
 - Coordinator of SAM (data storage/access system) shifts (Yip)
 - Member Trigger Board (Turcot)
 - Upgrade Management (Kotcher)
- Physics Analyses Activities:
 - -- High Energy Frontier:
 - Higgs Search (Kahn, Patwa, Snyder, Turcot)
 - SUSY search, tau channel (Protopopescu)
 - -- Flavor Physics (Jain, Yip)

$Z \to \tau \tau$ in RunII Data

D₀ analysis

 The D0 BNL Group is proposing to establish a D0 Regional Analysis Center, by expanding the RHIC and ATLAS Computing Facilities. Vivek Jain will discuss this in his talk today.

Select events with good e and μ and 1-prong τ candidates.

Use Neural Network to identify τ 's.

NN output

NN ouput

NN uses calorimeter and track energy distributions as inputs

Run II Physics Program: The Larger Picture

300 pb⁻¹

- Improved m_t measurement
- ➤ High p_T jets constrain proton structure
- B Physics
- Searches beyond Run I sensitivity

2 fb⁻¹

- \rightarrow Measure m_t (M_W) to ±3 GeV (± 15 MeV)
- Directly exclude m_H = 115 GeV
- Significant SUSY and SUSY Higgs searches
- ➤ B-physics: constrain the CKM matrix

5 fb⁻¹

- \rightarrow 3 σ Higgs signal @ m_H = 115 GeV
- exclude Higgs 115-125, 155-175 GeV
- exclude much of SUSY Higgs parameter space

15 fb⁻¹

- \succ 5σ Higgs signal @ m_H = 115 GeV
- ightharpoonup 3 σ Higgs signal m_H = 115-135, 150-175 GeV
- Ultimate precision for top, EW and B physics
- Ultimate reach for New Phenomena

Luminosity/Run	lla	/ IIb
Integrated (fb ⁻¹)	2	10-15
Instantaneous (x10 ³² cm ⁻² s ⁻¹)	1-2	2-4

Replace Silicon Detector with rad-hard version

Improve b-tagging performance Good pattern recognition over $|\eta| < 2$

Upgrade Trigger

Mainly L1: increased functionality to contain rates and deadtime

Incremental upgrades to L2, L3 and online system

Run IIb Project Organization

1.1.8 Administration

DOE Level 1 Milestones

Milestone	DOE Level 1 Milestone Date			
All silicon sensors delivered and tested	12/09/04			
Online System Production and Testing Complete	10/07/05			
Silicon stave production complete	12/22/05			
Level 2 Trigger Production and Testing Complete	01/05/06			
Level 1 Trigger Production and Testing Complete	01/10/06			
Silicon ready to move to D0 Assembly Building	05/25/06			
CD-4: DOE Approval of Project Closeout	11/06			

RSVP

- Two experiments with reach beyond the standard model
 - KOPIO ($K_L^0 \to \pi^0 \nu \overline{\nu}$) and MECO (μ -N \to e-N)
- NSF-funded construction (~\$150M) & operation (~\$12M/yr)
- Construction start in FY 2006; efforts under way to advance this to FY 2005
- DOE-HEP support of BNL scientific research staff is required to make KOPIO & MECO work

KOPIO

- Current experimental upper limit for $K_1^0 \rightarrow \pi^0 \nu \overline{\nu}$ branching ratio (BR) is **5.9** \times **10**⁻⁷ (KTEV)
- Theoretical upper bound using $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ events is 1.7 x 10⁻⁹
- KEK391a proposes to reach single event sensitivity of 3 x 10⁻¹⁰
- Standard Model predicts BR of 3 x 10⁻¹¹
- KOPIO proposes to measure the BR with 40 events at the Standard Model level; and with a single event sensitivity of below 10⁻¹²
- KOPIO improvement over KTEV from
 - More acceptance (x 5.6)
 - Predominant π^0 decay (x 83)
 - More decaying K's (x 800)
- BNL group has long experience with rare decays and high efficiency γ vetoes

KOPIO Status

- A 3-phase funding plan for KOPIO/RSVP appears in the FY04 NSF Budget Request for a FY06 capital start
- The NSF is likely to provide additional Concept/Development funds to both experiments as interim support

RSVP Funding, by Phase

KOPIO Scientific

Staff: Diwan Frank

Jaffe Kettell

Littenberg

Redlinger

Sivertz

Scarlett

Ιi

KOPIO Status and Activities

- NSF Technical/Management Review (1/03):
 - "The ... KOPIO roadmap ... is well thought out and provides a basis ... to bring KOPIO to construction readiness in a timely way for FY2004 construction."
- Broad range of activities centered at BNL:
 - Physics + C-AD verified essential micro-bunching of beam
 - Canadian grant of \$5M to upgrade AGS intensity for KOPIO
 - Integration design effort focused on thin wall decay vacuum sys
 - Significant effort on GEANT simulation of beam & detector
 - DAQ responsibility & participation in trigger design
 - Participating in development of downstream veto system

E949

Of the four 'golden modes' that provide unambiguous determination of fundamental CKM parameters, two have been approved to run at BNL: $K^+ \to \pi^+ \nu \nu$ and $K_L \to \pi^- \nu \overline{\nu}$ [talk by Bryman]

E949

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (E949) was approved to run by DOE in 99**.
 - Endorsed by the national and international HEP community
- $K_L^0 \to \pi^0 v \overline{v}$ (KOPIO) was approved by NSF for construction start in FY 2006
 - **Currently seeking NSF approval to run E949
- BNL is recognized internationally as the center of expertise on $K \to \pi v \overline{v}$ and it is the responsibility of DOE to assure that this expertise is not further compromised by additional research funding cuts.
- DOE's investment in E787/E949 has paid dividends in the discovery of $K^+ \to \pi^+ \nu \bar{\nu}$ and is poised to make a significant impact on our understanding of CP violation.

Improved Detector Resolution

and Rate Capability

Physics Dept. Overview -

Office

MECO

[talk by Morse]

- (μ-N→e-N) with sensitivity of 1 in 10¹⁷ the best bet for discovering muon and electron number violation in the charged sector
 - This process is predicted or allowed at or above the experimental sensitivity in many scenarios for physics beyond the Standard Model.
 - Approved for funding by the NSF in the MREFC program as part of RSVP
 - Currently scheduled for construction project funding starting FY06
 - Unique capabilities of the AGS to make the world's most intense muon beam
 - Operations will be fully supported by the NSF

BNL Contributions to MECO

- Conceptual design of AGS modifications (M. Brennan, accel. phys.)
- Conceptual design work on proton beam (K. Brown, accel. phys.)
- Preliminary p-beam and exp. layout, cost & schedule (D. Phillips, eng.)
- Consulting on magnet design, other issues (W. Meng, liaison phys.)
- Detailed conceptual design of vacuum separation window (D. Weiss)
- Simulation of radiation levels (P. Yamin)
- Activation calculations (A. Stevens)
- Contributions to mag. design cryogenic, safety interfaces (M. larocci)
- Detector mounting system (W. Leonhardt)
- Muon beamline oversight (W. Morse)
- Magnet procurement expertise (D. Dale)

MECO Scientific Staff:

Brown

Brennan

Greene

Jia

Marciano

Morse

Semertzidis

Yamin

Current MECO Status

Scientific approval status:

- Approved by BNL and by the NSF through the level of the Director
- Approved by the National Science Board for a MRE Grant
- Endorsed by the HEPAP Subpanel

Technical and management review status:

- Positively reviewed by multiple NSF and Laboratory appointed panels
- Magnet system positively reviewed by external expert committees appointed by MECO leadership

Funding status:

- MECO is currently operating on two R&D grants for a total of \$2.1M
- Construction funding for RSVP appears in 2004 NSF budget submission to Congress for an FY06 start
- Additional project development funding is being discussed with NSF.

Muon (g-2)

- **AGS E821** Precision Measurement of Muon (g-2)
- Boston, BNL, Cornell, Fairfield, Heidelberg, Illinois, Minnesota, Novosibirsk, Sci. Univ. Tokyo, KEK, Yale
- Goal is a measurement of the anomalous magnetic moment of the muon at the 0.35 ppm level
 - a factor of 20 improvement over CERN experiment
 - sensitive to new physics (e.g. SUSY)

[talk by Morse]

New radiative return e⁺e⁻ data from KLOE and B factories. Calculate hadronic correction to a,, on the lattice.

Muon (g-2)

Plans

- Now analyzing 2001 run a(μ⁻) data.
 - Result early summer
- 4X improvement at AGS possible NSF proposal
 - Larger inflector aperture, beam line emittance
 - SM hadronic contribution
- BNL team might participate in JPARC LOI January, 2003.
 - Lee Roberts spokesman.
 - 10X improvement at JPARC
 - 0.9MW (JPARC) vs. 0.15MW (AGS)
 - Larger inflector aperture, beam line emittance
 - SM hadronic contribution

MINOS Scientific Staff: Diwan Viren

Neutrino Physics - MINOS

- Very Long Baseline Oscillations [talk by Kirk]
- MINOS at Fermilab Long baseline oscillations
- BNL Group contributions
 - M. Diwan is the co-convener of the $v_{\mu} \rightarrow v_{e}$ analysis group
 - This will be one of the key measurements from MINOS
 - B. Viren is in charge of the event display package and of the software for online beam monitoring.
 - Viren has also made key contributions to the object-oriented software development
 - BNL developed the beam monitoring detectors in collaboration with Fermilab, Pittsburgh and Wisconsin
 - Publication: J. McDonald et al., NIM A496 (2003) 293-304
 - BNL Group is studying possible beam upgrades for NuMI to create a better-tuned spectrum when oscillation parameters are better known.

NuMI Beam Tuning

Oscillation probability and NuMI flux vs. E_v

- Currently the first minimum is expected to be at 1.5 GeV for MINOS
- Unclear if MINOS can see the "Spectrum Dip"
 - Also not optimized for $v_{\mu} \rightarrow v_{e}$
- Goal for beam optimization
 - Eliminate flux above 6 GeV
 - Increase flux below 1.5 GeV

Adv. Accel. Scientific Staff: Palmer Fernow Berg

Advanced Accelerator Group

- Hg Jet Target Experiment
 - Run last year at ¼ p intensity & no magnetic field
 - Progress in simulation
 - Design of test magnet
 - AGS run with full intensity and magnet in 05/06
- Design and Simulation of Neutrino Factory
 - Study 2 (at BNL site) in 2001
 - Progress on 6D Cooling Rings reducing cost
 - Progress on Fixed Field Alternating Gradient (FFAG) Acceleration reducing cost
 - Work towards lower cost Study 3
- Joined proposed international cooling experiment (MICE)
 - Design and Simulation

[talk by Palmer]

Adv. Accel. Activities

Neutrino Factory simulations

- studying lower cost alternatives
 - e.g. muon ring coolers
 - use ionization cooling (energy loss + reacceleration)
- 3 ring families under study
- wedge absorbers give longitudinal cooling

RFOFO cooling ring with solenoid focusing

The BNL Accelerator Test Facility

- Proposal-driven, advisory committee reviewed USER'S FACILITY for long-term R&D in Accelerator and Beam Physics.
- Serving National Labs, universities and industry.
- Contributes to Graduate Education in Beam Physics.
- From last year's review: "...ATF continuous its tradition of carrying out excellent research... providing an excellent training ground for many young accelerator physicists."

[talk by Ben-Zvi]

ATF Scientific Staff: Ben-Zvi Pogorelsky Wantanabe Yakimenko Deng

ATF Experiment Hall: A small but extremely complex facility.

Recent result: Observation of Plasma Wake focusing

Astrophysics

- The BNL Physics Department is interested in adding astrophysics to its portfolio of activities
 - Good fit with mission, complementary to ongoing HENP physics
 - Energy frontier, BSM physics; early universe studies at RHIC
 - Applications to astrophysics of Instrumentation Division expertise
 - Si pixel detectors, low noise electronics
- Discussions at an early (but enthusiastic) stage
 - Effort on LSST multi-gigapixel focal plane detector
 - Possible joint effort with other DOE HEP labs, could lead to proposal to DOE
 - Goal for BNL Physics would be a research group as well as hardware contribution.
 - BNL also has a high performance data storage/analysis capability (RCF/ACF)
- Other options open for exploration

LSST

- Large Synoptic Survey Telescope
 - Ground-based facility
 - 8.4 meter, 7 square-degree field, synoptic survey telescope. The product of collecting area and field of view will be 20 times more powerful than any observatory now operating or under construction.
 - The heart of the 2.3 Gpixel camera will be an array of imager modules with 10μm pixels.
 - Once each month LSST will survey up to 14,000 deg² of the sky with many ~10 sec exposures.
 - Over time LSST will survey 30,000 deg² deeply in multiple bandpasses, enabling innovative investigations ranging from galactic structure to cosmology.

syn-op-tic
Affording a
general view of a
whole; relating to
or displaying
conditions (as of
the atmosphere
or weather) as
they exist
simultaneously
over a broad
area

	B&R Classification	FY 2002	<u>FY 2003</u>	PRES. FY 2004	REQUEST FY 2004	Proposed FY 2005
	KA110102 [Research] KA110102 [Research Capital]	7.30 0.99	8.26 0.00	6.77 0.99	8.53 1.42	8.99 1.28
Physics	KA1102043 [LHC ATLAS] KA1102043 [LHC ATLAS MIE 01 CA]	2.00 4.80	1.20 3.18	0.60 2.00	0.60 2.00	0.60 2.07
Operating	KA1102051 [LHC ATLAS Computing] KA1102052 [LHC Experimental Support]	1.20 0.20	1.31 0.40	0.68 0.00	2.75 2.23	3.69 5.58
Budgets	KA1401020 [Theoretical Physics]	2.50	2.35	2.27	2.65	2.75
	KA1401030 [SciDAC]			0.16	0.16	0.16
	KA1501020 [Accelerator Science] KA1501020 [ATF Capital]	0.75	1.83 0.20	2.14 0.19	2.26 0.30	2.28 0.30
	KA1502030 [Muon Collider R&D] KA1502030 [Muon Collider Capital]	1.50 0.30	0.9 5 0.10	0.96 0.00	1.30 0.00	1.34 0.00
	KA1503020 [Other Technology R&D] Total Ops Total Capital	0.94 16.39 6.09	0.93 17.23 3.48	0.87 14.45 3.18	1.11 21.59 3.72	1.15 26.54 3.6 5
	Total	22.48	20.71	17.63	25.31	30.19
	Staff Levels (FTE's) TOTAL Scientific	47.0	44.8	41.1	51.6	50.9
	Professional	23.0	27.5	20.5	28.7	28.7
	Tech/Admin.	22.0	20.1	19.5	20.3	20.3
	Graduate Students	0.0	0.8	0.0	0.0	0.0
	Total	92.0	92.4	81.1	100.6	99.9

Decrease from FY 2002 to FY 2003: FY 2003 contains 8 new FTEs (ATF group) \Rightarrow 8 FTE reduction (base + theory) so far

Work Jeopardized by the FY 2003 Budget

- We have stopped hiring no postdoc for D0 or ATLAS
- ATLAS responsibilities for Liquid Argon hardware and software are affected.
- Maintenance of a viable presence in MINOS
- Preparation of KOPIO, MECO
 - Quite counterproductive if we RIF scientists who understand the experiments and then the program goes ahead
- Final Analysis of the remaining g-2 data
- Analysis of the E949 data quantity was of a similar sensitivity as E787
- Preparation of CKM
- We requested \$800k in February to retain the 3.5 FTE scientists to allow the program above. This was denied.
 - Lab commitment of \$350k is important but not sufficient. RIFs ongoing.

FY04 President's Request compared to FY03:

- KA110102 Proton Research <u>decreased</u> by 10% (assuming 3.5% escalation of labor which dominates the budget). ⇒ reduction of 3.5 FTEs. This does not include the impact on other B&R codes.
- Allows for sub-optimal performance of: ATLAS, D0, RSVP, MINOS, E949
- The following would jeopardized or halted: CKM, g-2, EDM
- Annual performance goals in our major subprogram area: ATLAS
 - Would not affect the % completion of ATLAS
 - However, difficult to add the needed FTEs to ATLAS
 - Would be unable to proceed with the Physics Analysis Center

FY04 Budget Discussion

- FY04 at –2% relative to President's Request
 - 2% in Research is one junior staff or 1.3 postdocs
 - Allows for sub-optimal performance of:
 - ATLAS, DO, RSVP, MINOS
 - Would result in the following impacts:
 - Curtailment of E949 analysis, in addition to (CKM, g-2, EDM,)
- FY04 at +2% relative to President's Request
 - Where would we put additional funding and what would benefits be?
 - ATLAS hire needed staff; get prep for Research on track
 - There are the following Issues/Concerns/Change in Personnel/New Directions/etc
 - We want to add at least one staff member to the neutrino effort, to maintain a viable MINOS presence and to develop the Very Long Baseline Neutrino concept.

FY05 Scenarios: Proton Research

- FY05 at -10% wrt FY04 President's Request: A <u>further</u> reduction of 4⁺ FTEs
 - Allows for the following minimal performance:
 - ATLAS, D0, RSVP
 - Would result in the following impacts...
 - Drop one physics and one service topic from D0, halt MINOS, E949, CKM, g-2, EDM
- FY05 funding same as FY04 (flat-flat): A <u>further</u> reduction of 1⁺ FTEs
 - Allows for the following minimal performance (delta with respect to -10% case)
 - ATLAS, D0, RSVP, MINOS,
 - Would result in the following impacts...
 - E949, CKM, g-2, EDM stopped

FY05 Scenarios: Proton Research

- FY05 funding at +2% wrt FY04 Pres. Req.: A <u>further</u> reduction of 0.5⁺ FTEs
 - Allows for the following sub-optimal performance: (delta with respect to flat-flat)
 - ATLAS, D0, RSVP, E949
 - Would result in the following impacts…
 - CKM, g-2, EDM stopped
- Annual performance goals in our major subprogram areas: ATLAS
 - Construction progress would not be affected. ATLAS PAC staffing would lag.
- There are the following Issues/Concerns/New Directions/etc
 - ATLAS Physics Analysis Center
 - We want to add at least one staff member to maintain a viable MINOS presence and to develop the Very Long Baseline Neutrino concept.

Summary

- The Physics Department has a strong program of forefront activities that is responsive to DOE research priorities in experimental and theoretical particle physics
- Physics Dept. has world-class efforts in accelerator and detector R&D deployed in support of ambitious new initiatives in HEP
- At present, HEP is in serious funding trouble in the Physics Dept. The base program and HEP Theory are losing staff and will continue to do so.
- BNL is committed to crafting a sustainable, prioritized HEP program that provides breadth and and is responsive to national and international priorities
- In the face of continuing budget cuts in the base program, this will become impossible to accomplish. Critical skills, recruiting opportunities and physics advances are being lost

